The data listed is for the airframe with no fuel (empty
weight). The first variables listed are those that do not change.
d = Missile reference diameter (0.625 ft = 0.1905 m)
S = Missile reference area (0.3067 ft2 = 0.0285 m2)
Ixx = 1.08 slug.ft2 = 1.4643 kg.m2
Iyy = 70.13 slug.ft2 =
95.0823 kg.m2
Izz = 70.66 slug.ft2 =
95.8008 kg.m2
Unfortunately, Smith (1989) do not list the length of missile. But, using Iyy, m, and d, we can estimate the length using this relation
                Iyy = (1/12)mL2
+ (1/16)md2
then L = 3.333 m.
Products of Inertia:
Ixy = 0.274 slug.ft2 =
0.3715 kg.m2
Ixz = 0.704 slug.ft2 =
0.9545 kg.m2
Iyz = -0.017 slug.ft2
= 0.0230 kg.m2
The following data is a function of the flight conditions. The data is listed for two conditions:
Condition #1:
                Angle-of-attack 10 degrees
                Sideslip
angle    0 degrees
                Roll
rate               0 deg/sec
                Pitch
rate            0 deg/sec
    Yaw rate              0 deg/sec
    Altitude               40.000 ft
    Mach                     2.5
Condition #2:
                Angle-of-attack 10 degrees
                Sideslip
angle    0 degrees
                Roll
rate               0 deg/sec
                Pitch
rate            0 deg/sec
    Yaw rate              0 deg/sec
    Altitude               65.000 ft
    Mach                     3
Q  Dynamic
pressure:
                Condition
1: 1719.93 lb/ft2 = 82350.2484 N/m2
                Condition
2: 749.29 lb/ft2 = 35876.0052 N/m
Aerodynamic Force Equation:
Fy = QS(CYββ + CYpp
+ CYrr + CYδpδp + CYδrδr)
Fz = QS(CNαα + CNα̇α̇
+ CNqq + CNδqδq)
Aerodynamic Momen Equation:
l = QSd(Clββ + Clpp
+ Clrr + Clδpδp + Clδrδr) 
m = QSd(Cmαα + Cmα̇α̇
+ Cmqq + Cmδqδq)
n = QSd(Cnββ + Cnpp
+ Cnrr + Cnδpδp + Cnδrδr)
Following are the aerodynamic derivatives (units are per rad). Note that CNα was obtained by taking the slope of the aerodynamic derivative CN (not listed).
Condition
  1 
 | 
  
Condition
  2 
 | 
 |
CNα 
 | 
  
-50.7067 
 | 
  
-47.3550 
 | 
 
CNα̇ 
 | 
  
0.0221 
 | 
  
0.0182 
 | 
 
CNq 
 | 
  
-0.0103 
 | 
  
-0.0082 
 | 
 
CNδq 
 | 
  
-3.1182 
 | 
  
-2.4653 
 | 
 
CYβ 
 | 
  
-16.1902 
 | 
  
16.2871 
 | 
 
CYp 
 | 
  
-0.0004 
 | 
  
-0.0003 
 | 
 
CYr 
 | 
  
0.0082 
 | 
  
-0.0051 
 | 
 
CYδp 
 | 
  
0.2229 
 | 
  
0.5171 
 | 
 
CYδr 
 | 
  
3.5252 
 | 
  
3.2733 
 | 
 
Clβ 
 | 
  
-9.3923 
 | 
  
-7.5674 
 | 
 
Clp 
 | 
  
-0.0069 
 | 
  
-0.0027 
 | 
 
Clr 
 | 
  
0.0011 
 | 
  
0.0051 
 | 
 
Clδp 
 | 
  
-4.0739 
 | 
  
-3.2080 
 | 
 
Clδr 
 | 
  
-5.5816 
 | 
  
-4.7366 
 | 
 
Cmα 
 | 
  
-17.6108 
 | 
  
-16.8330 
 | 
 
Cmα̇ 
 | 
  
0.0124 
 | 
  
0.0182 
 | 
 
Cmq 
 | 
  
-0.1329 
 | 
  
-0.1043 
 | 
 
Cmδq 
 | 
  
-25.4394 
 | 
  
-20.4340 
 | 
 
Cnβ 
 | 
  
3.6044 
 | 
  
1.9920 
 | 
 
Cnp 
 | 
  
0.0026 
 | 
  
0.0019 
 | 
 
Cnr 
 | 
  
-0.1231 
 | 
  
-0.928 
 | 
 
Cnδp 
 | 
  
5.8220 
 | 
  
5.7507 
 | 
 
Cnδr 
 | 
  
-28.4375 
 | 
  
-25.7876 
 | 
 
Reference
Smith, Roger L. (1989). An Autopilot Design Methodology for
Bank-to-Turn Missiles. Interim Report for Air Force Systems Command, US Air
Force, Florida.
No comments:
Post a Comment