Sunday, March 24, 2019

Aerodynamic Coefficients of Extended Medium Range Air-to-Air Technology (EMRAAT) Missile

This parameter list belongs to EMRAAT missile used by Smith (1989).




 EMRAAT Missile Airframe

The data listed is for the airframe with no fuel (empty weight). The first variables listed are those that do not change.

d = Missile reference diameter (0.625 ft = 0.1905 m)
S = Missile reference area (0.3067 ft2 = 0.0285 m2)
m = Missile mass (empty) (227 lb = 102.9672 kg) 


Moments of Inertia:
Ixx = 1.08 slug.ft2 = 1.4643 kg.m2
Iyy = 70.13 slug.ft2 = 95.0823 kg.m2
Izz = 70.66 slug.ft2 = 95.8008 kg.m2

Unfortunately, Smith (1989) do not list the length of missile. But, using Iyy, m, and d, we can estimate the length using this relation
                Iyy = (1/12)mL2 + (1/16)md2
then L = 3.333 m.

Products of Inertia:
Ixy = 0.274 slug.ft2 = 0.3715 kg.m2
Ixz = 0.704 slug.ft2 = 0.9545 kg.m2
Iyz = -0.017 slug.ft2 = 0.0230 kg.m2

The following data is a function of the flight conditions. The data is listed for two conditions:
Condition #1:
                Angle-of-attack 10 degrees
                Sideslip angle    0 degrees
                Roll rate               0 deg/sec
                Pitch rate            0 deg/sec
    Yaw rate              0 deg/sec
    Altitude               40.000 ft
    Mach                     2.5
Condition #2:
                Angle-of-attack 10 degrees
                Sideslip angle    0 degrees
                Roll rate               0 deg/sec
                Pitch rate            0 deg/sec
    Yaw rate              0 deg/sec
    Altitude               65.000 ft
    Mach                     3

Q  Dynamic pressure:
                Condition 1: 1719.93 lb/ft2 = 82350.2484 N/m2
                Condition 2: 749.29 lb/ft2 = 35876.0052 N/m

Aerodynamic Force Equation:
Fy = QS(Cβ + CYpp + CYrr + CYδpδp + CYδrδr)
Fz = QS(Cα + CNα̇α̇ + CNqq + CNδqδq)

Aerodynamic Momen Equation:
l = QSd(Cβ + Clpp + Clrr + Clδpδp + Clδrδr)
m = QSd(Cα + Cmα̇α̇ + Cmqq + Cmδqδq)
n = QSd(Cβ + Cnpp + Cnrr + Cnδpδp + Cnδrδr)

Following are the aerodynamic derivatives (units are per rad). Note that C was obtained by taking the slope of the aerodynamic derivative CN (not listed).

Condition 1
Condition 2
C
-50.7067
-47.3550
CNα̇
0.0221
0.0182
CNq
-0.0103
-0.0082
CNδq
-3.1182
-2.4653
C
-16.1902
16.2871
CYp
-0.0004
-0.0003
CYr
0.0082
-0.0051
CYδp
0.2229
0.5171
CYδr
3.5252
3.2733
C
-9.3923
-7.5674
Clp
-0.0069
-0.0027
Clr
0.0011
0.0051
Clδp
-4.0739
-3.2080
Clδr
-5.5816
-4.7366
C
-17.6108
-16.8330
Cmα̇
0.0124
0.0182
Cmq
-0.1329
-0.1043
Cmδq
-25.4394
-20.4340
C
3.6044
1.9920
Cnp
0.0026
0.0019
Cnr
-0.1231
-0.928
Cnδp
5.8220
5.7507
Cnδr
-28.4375
-25.7876

Reference
Smith, Roger L. (1989). An Autopilot Design Methodology for Bank-to-Turn Missiles. Interim Report for Air Force Systems Command, US Air Force, Florida.

No comments:

Post a Comment